Разделы
· О сайте
· Управление предприятием
· Маркетинговый план
· Финансовое планирование
· Бизнес-планирование
· Исследования рынка
· Форумы по бизнесу
· Должностные инструкции
· Положения об отделах



Обзоры рынков
· Потребительские рынки
· Промышленность
· Информационные технологии
· Финансы и страхование
· Строительство и недвижимость
· Транспорт и грузоперевозки
· Сфера услуг, рестораны и туризм
· Сельское хозяйство
· Cвязь

Плановик.Ру

С.И. Головань, М.А. Спиридонов
Бизнес-планирование и инвестирование

Учебник. Ростов н/Д: Феникс, 2008. – 302 с.

Предыдущая

10. УЧЕТ РАЗЛИЧНЫХ ФАКТОРОВ ПРИ РАСЧЕТЕ NPV

10.4 Нормирование капиталовложений

До этого момента предполагалось, что фирма обладает достаточными фондами, чтобы инвестировать в любой проект, который имеет положительную NPV. Однако из-за внешних ограничений (жесткое нормирование) или внутренних факторов (мягкое нормирование) доступные фонды для инвестиций могут быть ограничены. В таком случае, выбор надо уже делать между проектами с положительной NPV.

Для этого более применим индекс рентабельности инвестиций (PI), чем оценка NPV. В то время, как NPV показывает стоимость инвестиций, PI выражает эту стоимость с позиции удельного веса необходимых первоначальных затрат. Таким образом, при нехватке фондов проект с более высоким PI был бы предпочтительнее, так как прибыль с каждого вложенного рубля будет больше, чем у проекта с низким PI.

Пример 6. Компания имеет 100 000$, которые она может инвестировать. Рассматриваются следующие инвестиционные проекты:

Проект

IC

NPV

PI

A

50 000

80 000

 

B

30 000

45 000

 

C

20 000

40 000

 

D

30 000

42 000

 

E

20 000

32 000

 

Какие проекты будут отобраны ? Какая суммарная NPV будет получена?

Будут выбраны проекты в следующем порядке: C, A, E. Оставшиеся 10 000$ будут вложены в проект B. Суммарная NPV составит: ((40 000 + 80 000 + 32 000 + (45 000 / 3)) = 167 000).

Проект

IC

NPV

PI

A

50 000

80 000

1,6

B

30 000

45 000

1,5

C

20 000

40 000

2,0

D

30 000

42 000

1,4

E

20 000

32 000

1,6

Основное упрощение в этом примере состоит в том, что проекты делимы (как в случае с проектом B). На практике это не всегда так и не все доступные фонды могут быть потрачены, если выбраны только "целые" проекты. Столкнувшись с неделимыми проектами, возможны различные группировки, которые соответствуют бюджету расходов. Таким образом, инвестор должен собрать портфель проектов, выбирая такие, которые дают максимальную NPV.

Пример 7. Решим эту задачу, используя данные примера 6.

Возможные группировки проектов:

Комбинации

NPV, тыс. $.

Общий NPV, тыс. $.

A, B, C

80 + 45 + 40

165

A, B, E

80 + 45 + 32

157

A, C, D

80 + 40 + 42

162

A, C, E

80 + 40 + 32

152

A, D, E

80 + 42 + 32

154

B, C, D, E

45 + 40 + 42 + 32

159

Таким образом, там где нельзя выбрать проект B частично, наиболее предпочтительной является первая комбинация, хотя она и дает меньшую суммарную NPV, чем в примере 6.

Таким образом, в условиях нормирования капитала, выбор проектов с наибольшими PI обеспечит фирме максимальную NPV. В случае если проекты неделимы, метод "портфеля" используется для выбора лучшей группы проектов, хотя недостаток неделимости означает, что общая NPV не достигнет своего наибольшего возможного значения.

Более сложным методом отбора проектов при существовании одного или нескольких ограничений на объемы возможных инвестиций является линейное программирование (LP).

Линейное программирование – это метод пришедший из области операционных исследований и подразумевающий обычно использование вычислительной техники. С помощью этого метода можно вычислить оптимальные решения, когда цель (максимизация NPV) должна быть достигнута при соблюдении определенных условий (в нашем случае в условиях нормирования капитала). В более сложных формах линейное программирование может просчитать пути достижения множества целей при задании нескольких исходных условий, в том числе и ограничений с вероятностными исходами. Линейное программирование также применимо, когда инвестиционный проект должен удовлетворять требованиям по минимальной ликвидности (сроку окупаемости) и доходности.

Чтобы использовать линейное программирование, следует сформулировать ряд целей и ограничений, которые определяют необходимое количество информации для принятия решения. Определенным препятствием на пути применения LP является необходимость четкого определения значений ключевых переменных, влияющих на конечное решение.

Пример 8. У компании есть 3 инвестиционных проекта. NPV всех проектов положительна. Однако компания не может принять все проекты по причине недостаточности ресурсов. На этот и следующий год доступны по 200 000$, причем не потраченные суммы не могут быть перенесены на следующий год.

Проект

NPV, тыс. $.

IC, тыс. $.

в 1-ый год

во 2-ой год

X

180

60

80

Y

370

100

100

Z

540

140

140

Данный пример может быть (в силу простоты) решен 2-мя путями:

а) путем ручного перебора всех комбинаций:

Комбинация

Общая NPV, тыс. $

IC, тыс. $.

Осуществимы ?

в 1-ый год

во 2-ой год

Один X

190

60

80

Да

Один Y

370

100

100

Да

Один Z

540

140

140

Да

X и Y

550

160

180

Да

X и Z

720

200

220

Нет

Y и Z

910

240

240

Нет

X, Y и Z

1090

300

320

Нет

Заметим, что если рассматривается только текущий год, будет выбрана комбинация X и Z (требуемые капиталовложения 200 000$ и общая NPV – 720 000$). Но если принять во внимание следующий год, комбинация X и Z превышает допустимые фонды (требуемые капиталовложения 220 000$). Поэтому лучший вариант, который осуществим за 2 года – это комбинация X и Y проектов с суммарной NPV – 550 000$.

б) сформулировать задачу линейного программирования:

1) Цель (целевая функция) – (максимизация значения NPV);

2) Ограничения:

 (1-ый год);

 (2-ый год).

3) Также необходимо наложить такие ограничения, чтобы ответы на эту задачу имели смысл. Для этого решения должны быть или "0", или "1". Не может быть отрицательных решений (нельзя инвестировать отрицательную сумму в проект), решения должны быть целыми числами (нельзя вложить в часть проекта) и решения не могут превышать "1" (нельзя инвестировать более одного раза в один и тот же проект). Поэтому вводятся следующие ограничения:

;

;

.

Сформулированная задача решается с помощью компьютерной программы (здесь используется MS Excel):

Описание: lp-01

Рис. 10.1 Условие задачи примера 8[5]

Для решения задачи необходимо выполнить пункт меню "Сервис - Поиск решения" и заполнить необходимые пункты появившейся формы, после чего нажать "Выполнить":

Описание: lp-02

Рис. 10.2 Использование поиска решения

Описание: lp-03

Рис. 10.3 Решение примера 8

Результат решения задачи линейного программирования согласуется с вариантом ручного перебора всех возможных комбинаций проектов. В таком простом примере преимущества применения LP не столь очевидны, как в случае, если бы мы рассматривали множество проектов со множеством ограничений.



[5] Обратите внимание, что в ячейках С9, С11, С12 занесены соответствующие формулы

Предыдущая



Copyright © 2006 - 2019, Плановик.Ру - бизнес-планы