Инновационный менеджмент
3.3. Дисконт-функция
Рассмотрим основные для дальнейшего понятия дисконт-функции
и нормы дисконта. (Термины используем в соответствии с отраженной в монографии
[5] традицией.)
Важно с самого начала осознать, что 1 руб. сейчас и 1 руб.
через год - это совсем разные экономические величины. Дисконт-функция как функция
от времени как раз и показывает, сколько стоит 1 рубль в заданный момент времени,
если его привести к начальному моменту. Например, "инфляционная" дисконт-функция
на 27 мая 1996 г. равна 1/12000, поскольку индекс инфляции на этот момент равен
12000 (округленно), если в качестве начального момента принять март 1991 г.
(по данным Лаборатории эконометрических исследований Московского государственного
института электроники и математики). При этом индекс инфляции показывает сравнительную
покупательную способность рубля - на 12000 руб. мая 1996 г. можно купить (в
среднем) столько же, сколько на 1 рубль в марте 1991 г.
В то же время "банковская" дисконт-функция учитывает упущенную
выгоду - если бы 1 рубль был вложен в банк с фиксированной процентной ставкой
в неизменных ценах, равной, например, 10% годовых, то за 5 лет и 2 месяца (март
1991 г. - май 1996 г.) он превратился бы в 1,64 руб. в неизменных ценах (марта
1991 г.), т.е., с учетом инфляции, в 19655 руб. мая 1996 г. Отметим, что, строго
говоря, реальная дисконт-функция, как и индекс инфляции, является функцией двух
аргументов - начального и текущего моментов времени. Очевидно, в определении
дисконт-фактора есть неопределенность, по крайней мере такая же, как в определении
индекса инфляции, для которого неопределенность связана с возможностью выбора
той или иной потребительской корзины (естественная потребительская корзина для
данного региона или инвестиционного проекта может отличаться от таковой для
экономики в целом и для товаров народного потребления в частности, поскольку
завод потребляет иные виды материальных ценностей, чем человек), тех или иных
цен в реально имеющемся диапазоне, а также зависит от степени заинтересованности
организации, рассчитывающей индекс. Так, индекс Госкомстата (при отсчета от
марта 1991 г.) в два с лишним раза меньше индекса независимых исследователей,
в частности, рассчитанного по нашей методике. Причины коренятся в печальной
истории статистики в нашей стране. Коротко говоря, одна группа причин связана
с желанием угодить заказчикам (высшим государственным органам), другая - с профессиональной
некомпетентностью. Подробнее "история с инфляцией" изложена в монографии [6].
Подведем итоги. Дисконт-функцию можно разложить на две составляющие
- общую для экономики в целом и специфическую для данной отрасли или данного
инвестиционного проекта. Если дисконт-функция - константа для разных отраслей,
товаров и проектов, то эта константа называется дисконт-фактором, или
просто дисконтом..
Общая дисконт-функция определяется совместным действием реальной
процентной ставки и индекса инфляции. Реальная процентная ставка описывает "нормальный"
рост экономики (т.е. без учета инфляции). В стабильной ситуации (при "долговременном
конкурентном равновесии"), как известно из экономической теории, доходность
от вложения средств в различные отрасли, в частности, в банковские депозиты,
должна быть одинакова. В современных условиях эта величина (норма рентабельности)
равна примерно 6-12% (см., например, [7]). Примем для определенности максимальное
значение, равное 12%. Другими словами, 1 рубль через год превращается в 1,12
руб., а потому 1 рубль через год соответствует 1/1,12 = 0,89 руб. сейчас - это
и есть максимально возможное значение дисконта.
Обозначим дисконт буквой С. Как установлено выше, С - число
между 0 и 1, точнее, максимально возможное значение дисконта равно 0,89. В общем
случае, если q - банковский процент (плата за депозит), т.е. вложив в начале
года в банк 1 руб., в конце года получим (1+ q) руб., то дисконт определяется
по формуле
С = 1 / (1+ q) (1).
Отметим, что при таком подходе полагают, что банковские проценты
платы за депозит одинаковы во всех банках. Более правильно было бы считать q,
а потому и С, нечисловыми величинами, а именно, интервалами [q1 , q2] и [С1
, С2] соответственно. При этом связь между интервалами определяется формулой
(1):
С1 = 1 / (1+ q2) , С2 = 1 / (1+ q1) .
Следовательно, выводы, полученные с помощью рассматриваемых
величин, должны быть исследованы на устойчивость (в инженерной среде принят
термин "чувствительность") по отношению к отклонениям этих величин в пределах
заданных интервалов.
Обозначим дисконт-функцию C(t) как функцию времени t. Тогда
при постоянстве дисконт-фактора во времени дисконт-фунция имеет вид
C(t) = С^t,(2)
т.е. С возводится в степень t. Согласно формуле (2) через 2
года 1 руб. превращается в 1,12 х 1,12 = 1,2544, через 3 - в 1,4049, следовательно,
1 руб., полученный через 2 года, соответствует 79,72 копейки сейчас, а 1 руб.,
обещанный через 3 года, соответствует 0,71 руб. сейчас. Другими словами, С(2)
= 0.80 (с точностью до двух знаков после запятой), а С(3) = 0,71.
Если дисконт-фактор меняется год от году, в первый год равен
С1, во второй год - С2 , в третий год - С3 ,..., в t - ый год - Сt , то в этом
общем случае дисконт-функция имеет вид
C(t) = С1 С2 С3 ... Сt .(3)
Пусть, например, С1 = 0,8, С2 = 0.7, С3 =.0.6, тогда согласно
формуле (3) имеем C(t) = 0,8 х 0,7 х 0.6 = 0,336. Если С1 = С2 = С3 =... = Сt
, то формула (3) переходит в формулу (2).
Индекс инфляции А (в разах, а не в процентах) за год дает дисконт
1/(1,12А), т.е. 1 руб. сейчас соответствует 1,12А руб. через год. Долговременная
динамика индекса инфляции плохо предсказуема.
Частная дисконт-функция зависит от динамики цен и темпов технологического
обновления (физического износа, морального износа, научно-технического прогресса)
в отрасли. Так, вложения в компьютеры обесцениваются гораздо быстрее, чем вложения
в недвижимость (здания, землю) - для покупки недвижимости, которая сейчас стоит
1 руб., через год может понадобиться 1,12А руб., а для покупки компьютера, который
сейчас стоит 1 руб., может понадобиться через год лишь 0,8 руб. (в ценах, которые
будут через год). Не будем касаться здесь достаточно сложных проблем оценки
социальных, технологических, экономических и технологических факторов (короче,
СТЭП-факторов), связанных с вложениями, например, в развитие образовательных
учреждений, и подходов к налогообложению таких учреждений.
Это может быть интересно (избранные параграфы):
- Типовая процедура подготовки документа
- Сравнение стратегического и оперативного менеджмента
- Неэкспериментальные методы
- Законы Паркинсона
|